Ir al contenido principal


 



A MI BLOGG

TEMAS


1.1 TEOREMAS
TEOREMAS DE BAYES
2.1 MEDIDAS DE TENDENCIA CENTRAL
3.1 MEDIDAS DE DISPERSION
4,1 DISTRIBUCION DE POSSION










Comentarios

Entradas populares de este blog

 AHORA HABLAREMOS  SOBRE TEOREMAS .. Teorema de Bayes El teorema de Bayes es utilizado para calcular la probabilidad de un suceso, teniendo información de antemano sobre ese suceso. Podemos calcular la probabilidad de un suceso A, sabiendo además que ese A cumple cierta característica que condiciona su probabilidad. El teorema de Bayes entiende la probabilidad de forma inversa al teorema de la probabilidad total. El teorema de la probabilidad total hace inferencia sobre un suceso B, a partir de los resultados de los sucesos A. Por su parte, Bayes calcula la probabilidad de A condicionado a B. El teorema de Bayes ha sido muy cuestionado. Lo cual se ha debido, principalmente, a su mala aplicación. Ya que, mientras se cumplan los supuestos de sucesos disjuntos y exhaustivos, el teorema es totalmente válido. Fórmula del teorema de Bayes Para calcular la probabilidad tal como la definió Bayes en este tipo de sucesos, necesitamos una fórmula. La fórmula se define matemáticamente como: Donde
 DISTRIBUCION DE POSSION En este post se explica qué es la distribución de Poisson en estadística y para qué sirve. Así pues, encontrarás la definición de la distribución de Poisson, ejemplos de distribuciones de Poisson y cuáles son sus propiedades. La  distribución de Poisson  es una distribución de probabilidad que define la probabilidad de que ocurra un determinado número de eventos durante un período de tiempo. Es decir, la distribución de Poisson sirve para modelizar variables aleatorias que describen el número de veces que se repite un fenómeno en un intervalo de tiempo. La distribución de Poisson tiene un parámetro característico, que se representa con la letra griega λ e indica el número de veces que se espera que ocurra el evento estudiado durante un intervalo dado. En general, la distribución de Poisson se usa para modelizar estadísticamente sucesos cuya probabilidad de ocurrencia es muy baja. Más abajo puedes ver varios ejemplos de este tipo de distribución de probabilidad.